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Abstract

General modelling of a resonant shunting damper has been made from piezoelectric sensor/actuator
equations. It is found that an additional damping, which is augmented to a system, is generated by the
shunt damping effect. The transfer function of the tuned electrical absorber is derived for both series and
parallel shunt circuit. The governing equations and associated boundary conditions are derived using
Hamilton’s principle. The shunt voltage equation is also derived from the charge generated in PZT due to
beam vibration. The frequency response function of the obtained mathematical model is compared with
that of the tuned electrical absorber and experimental work. The vibration amplitude is reduced about
15 dB at targeted second mode frequency.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Structural vibration suppression via piezoelectric shunt circuits has been of popular interest in
recent years due to light weight, ease of use, and good performance. Also, compared with
mechanical passive damping (viscoelastic material damping), piezoelectric shunted network is less
temperature dependent [1]. There are many kinds of shunt circuits such as resistive, inductive,
capacitive, and switched [2]. Each type of shunts has different characteristics to be exploited. We
focus on the inductive shunt circuit for vibration suppressions. An inductive shunt circuit results
in a resonant inductor–capacitor (LC) circuit; thus, it is called the resonant shunt circuit, whose
behavior is analogous to that of a mechanical vibration absorber. The resonant shunt circuit
consists of three components: a capacitor, a resistor and an inductor. The resistor–inductor (R–L)
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circuit, connected in series or in parallel, has dynamics similar to that of a mechanical vibration
absorber. Following the principle of a mechanical absorber, the resonant shunt must be tuned
correctly to absorb the vibration energy of the system’s target mode.
As shown in Fig. 1, the two external terminals of the PZT, modelled as a capacitor

(the piezoelectric element behaves electrically as a capacitor and a voltage source), are connected
to (a) the series or (b) parallel inductor and resistor branch shunt circuit. The piezo-
ceramic element is used to convert mechanical energy of a vibrating structure into electrical
energy by direct piezoelectric effect. This electric energy is dissipated as Joule heating through
the shunting resistor efficiently when the electrical resonant frequency matches the
mechanical frequency. At resonance, the reactive components between the LC cancel each other
and the phase between the current and voltage is zero. As a result, the power factor at resonance
becomes one.
Many researchers have developed theoretical analyses to represent the mechanism of shunting

damper. Hagood and von Flotow [3] presented the general shunted model for two shunt circuits:
the case of resistor alone and that of a RL connected in series. For resistive shunting, the material
properties exhibit frequency dependence similar to viscoelestic material. Law et al. [4] developed a
new model as considering the energy conversion and dissipation to characterize the damping
behavior of the piezo materials. Equations were derived to predict optimal resistance load,
maximum damping ratio and the shift of the resonance frequency. Tsai and Wang [5] presented
the active–passive hybrid piezoelectric network. The shunt circuit not only can provide passive
damping, it can also enhance the active action authority if tuned correctly. Saravanos [6]
developed mechanics for the analysis of damping in composite plates with multiple resistively
shunted piezoelectric layers. He showed that substantial vibration control of selected modes could
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Fig. 1. Schematic drawings of experimental setup for: (a) a series R–L and (b) a parallel R–L shunt circuit.
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be obtained by proper tuning of the resistive shunt circuit. Kim et al. [7] developed a finite element
code to represent active and passive schemes for non-linear flutter of composite panel. The effects
of vibration suppression by using a series R–L shunt circuit were investigated.
In this paper, the general modelling of the resonant shunting damper is presented, in which

shows the additional damping mechanism generated by the shunt damping effect. The transfer
function of the tuned electrical absorber is derived for both series and parallel R–L shunt branch
circuit. A cantilever beam with a pair of PZT patches is used to demonstrate theoretically and
experimentally the resonant shunt damping capabilities. The equations of motion and associated
boundary conditions of the shunted piezo/beam system are formulated using Hamilton’s
principle. Assumed series shape functions, which satisfy the boundary conditions, are used to
analyze the flexural motion of the cantilevered beam. The theoretical model obtained is validated
experimentally. The obtained results suggest that resonant shunting damper provides an effective
means for vibration control.

2. General modelling of resonant shunt circuit

The piezo shunt circuit generates an additional damping matrix which can be augmented to the
equation of motion of a structure system. A pair of piezoelectric actuator/sensor equations [8] is
used to derive an additional shunt damping matrix:

Actuator equations:

M .w þ C ’w þ Kw ¼ fext þ yVSH ; ð1Þ

Sensor equations:

q ¼ yTw þ CpVSH ; ð2Þ

where M; C; and K are the mass, damping, and stiffness matrices of the piezo/beam system
measured at constant electrical field (e.g., short circuit). Hence, the system stiffness consists of a
base structure stiffness and a short-circuited piezoelectric stiffness, that is, K ¼ Ks þ KE

p : In the
sensor equation, q is the piezoelectric charge matrix and y is the electromechanical coupling
matrix. This piezoelectric actuator/sensor equation accounts for the effects of dynamic coupling
between a structure and an electrical network through the piezoelectric effect. A current equation
can be obtained as differentiating the sensor Eq. (2). Substituting it into the shunt voltage
equation as shown in Fig. 2, we can define the shunt voltage equation as follows [9]:

VSH ¼ �ZSHI

¼ �ZSHðyT ’w þ CT
p
’VSHÞ

¼ �ZSHyTsw � ZSHCpsVSH ; ð3Þ

where s is the Laplace parameter. Therefore, the new defined shunt voltage can be

VSH ¼
�ZSHyTsw

1þ ZSHCps
: ð4Þ
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Substituting Eq. (4) into the actuator Eq. (1), the governing equation of a shunted system can be
augmented by adding the shunt damping matrix in the Laplace domain:

Ms2w þ C þ
ZSHyyT

1þ ZSHCps

� �
sw þ Kw ¼ fextðsÞ: ð5Þ

By dividing the both sides in Eq. (5) by the system stiffness, K, we can rewrite Eq. (5) as follows:

M

K
s2 þ

C

K
s þ 1þ

yyT

CpK

ZSHCps

1þ ZSHCps

� �
wðsÞ ¼

fextðsÞ
K

: ð6Þ

To obtain a position transfer function of a shunted system, the following parameters are used:

oE
n ¼

ffiffiffiffiffiffi
K

M

r
; g ¼

s

oE
n

;
C

K
s ¼ 2xg; #Z ¼ ZSHCps; K2

ij ¼
yyT

CpK
; ð7Þ

where oE
n is a natural frequency of a mechanical system with the short-circuited piezoelectric

material, g is a non-dimensional frequency, and Kij is a generalized electromechanical coupling
constant. By using the parameters defined above, Eq. (6) can be rewritten as

g2 þ 2xgþ 1þ K2
ij

#Z

1þ #Z

� �
w ¼ wst: ð8Þ

The transfer function of a mechanical structure with the shunted piezoelectric material is

w

wst

¼
1þ #Z

ð1þ #ZÞðg2 þ 2xgþ 1Þ þ K2
31

#Z
: ð9Þ

2.1. Series inductor and resistor shunt branch circuit

The impedance of a series R–L branch circuit is obtained from Fig. 3(a)

Zse
SH ¼ Ls þ R: ð10Þ

The generalized resonant impedance for a series R–L shunt, #Z; is given by

#Z ¼ Zse
SHCps ¼

s

oE
n

Zse
SHCpoE

n ¼ g2LCpðoE
n Þ

2 þ RCpoE
n g ¼

1

d2
ðg2 þ rgd2Þ; ð11Þ
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Fig. 2. Feedback current into a PZT due to shunt impedance.
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where d ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LCpoE

n

p
and r ¼ RCpoE

n : The d parameter is the non-dimensional turning ratio for
which the electrical resonant frequency is tuned in the vicinity of a mechanical resonant frequency.
Substituting #Z into Eq. (9) results in the final form of a system transfer function with an inherent
structural damping as follows:

w

wst

¼
d2 þ rgd2 þ g2

ðd2 þ rgd2 þ g2Þðg2 þ 2xgþ 1Þ þ K2
31ðg

2 þ rgd2Þ
: ð12Þ

2.2. Parallel inductor and resistor shunt branch circuit

Following the above procedure, the transfer function with a parallel R–L shunt branch circuit
can be described. The impedance of a parallel R–L branch circuit can be expressed in Laplace
form by

Z
pa
SH ¼

LRs

Ls þ R
: ð13Þ

The generalized resonant impedance for a parallel R–L shunt is given by

#Z ¼ Z
pa
SHCps ¼

s

oE
n

Z
pa
SHCpoE

n ¼
grLs

Ls þ R
¼

g2rLoE
n

LoE
n gþ R

¼
g2r

gþ rd2
: ð14Þ

Substituting Eq. (14) into Eq. (9) generates the transfer function for a parallel R–L shunted
piezoceramic and structure

x

xST
¼

g2r þ gþ rd2

ðg2r þ gþ rd2Þðg2 þ 2xgþ 1Þ þ K2
31ðg

2rÞ
: ð15Þ
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Fig. 3. Circuit models of piezoceramic with a series R–L and a parallel R–L shunt circuit.
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3. Equations of motion of the piezo/beam system

A mathematical model is developed to describe the flexural vibration behavior of a cantilevered
beam system with resonant shunt circuits. The equations of motion of an piezo/beam system are
obtained through Hamilton’s principle. A schematic configuration of a piezo/beam system with a
series and a parallel shunt circuit is shown in Fig. 1. The beam has length lb, width bb, thickness hb,
Young’s modulus Eb, and mass density rb. The PZT-5H has thickness hp, elastic modulus
measured at constant electrical field EE

p ; and piezoelectric constants d31 in the longitudinal
direction.
It is assumed that the transverse displacement, w, of all points on any cross-section of piezo/

beam layers is considered to be equal. Shear deformation and rotary inertia of the beam and piezo
layers are not included. For symmetry configuration of PZT patches, the net longitudinal
displacement of beam is assumed zero. In addition, the base beam layer and the piezoceramic
layers are considered to be perfectly bonded together.
The constitutive equation for a piezoelectric element [10] depends on the mechanical stress, s,

and strain, e, as well as the electric field, E, and the electric displacement, D. A common form of
constitutive equations, especially, for a passive shunt damping is

s

E

" #
¼

Es �h

�h b

" #
e

D

" #
; ð16Þ

where Es is the elastic modulus at the constant displacement, h is the piezoelectric constant, and b
is the dielectric constant.
The kinetic energy of a piezo/beam system can be described as

T ¼ Tb þ 2Tp; ð17Þ

where

Tb ¼
1

2

Z lb

0

rbAb

@w

@t

� �2

dx

and

Tp ¼
1

2

Z lb

0

rpAp

@w

@t

� �2

Hðx � x1Þ �Hðx � x2Þ½ � dx:

The strain energy of a piezo/beam system can be described as

U ¼ Ub þ 2Up; ð18Þ

where

Ub ¼
1

2

Z lb

0

EbIb

@2w

@x2

� �2

dx
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and

Up ¼
1

2

Z
V

ðeTsþ EDÞ dV

¼
1

2

Z lb

0

EE
p Ip

@2w

@x2

� �2

þ2bh31Dzn
@2w

@x2

� �
þ Apb33D

2

" #
Hðx � x1Þ �Hðx � x2Þ½ � dx;

where zn ¼ 1
2
hpðhb þ hpÞ and H is the Heaviside’s function. Also, Ab and Ap are the cross-sectional

area of beam and piezo layer, respectively. Furthermore, Ib and Ip are the area moment of inertia
about the neutral axis of each layer. In the above equations, ðx2 � x1Þ is the length of the PZT
patch. The subscripts b and p represent the base beam and piezoceramic, respectively. The virtual
work consists of three terms: the first term is for work done by the piezo resonant damper, the
second is due to the external force, and the third is due to the inherent damping force of a base
structure.
In series case,

dW ¼ ðLs þ RÞ ’QdQDHþ
Z lb

0

f ðx; tÞdw dx �
Z lb

0

cb
@w

@t
dw dx: ð19Þ

In parallel case,

dW ¼
LRs

Ls þ R

� �
’QdQDHþ

Z lb

0

f ðx; tÞdw dx �
Z lb

0

cb
@w

@t
dw dx; ð20Þ

where DH ¼ Hðx � x1Þ �Hðx � x2Þ½ � and Q is the electric charge generated by an external force.
The equations of motion and all the natural and geometric boundary conditions can be

obtained by applying Hamilton’s principle

dH ¼ d
Z t2

t1

ðT � U þ W Þ dt ¼ 0; ð21Þ

where t1 and t2 are the end points in the time domain and d is the virtual work parameter.
Substituting the strain energy and kinetic energy into Hamilton’s principle yields the following
equations of motion and electrical circuit equation:

rbAb

@2w

@t2

� �
þ cb

@w

@t

� �
þ EbIb

@4w

@x4

� �
þ 2 rpAp

@2w

@t2

� �
þ EE

p Ip

@4w

@x4

� �	 

Hðx � x1Þ �Hðx � x2Þ½ �

¼ f ðx; tÞ � bph31D3hpðhb þ hpÞ
@2

@x2
Hðx � x1Þ �Hðx � x2Þ½ �

� �
: ð22Þ

The electrical circuit equations in series and in parallel shunt circuit are

h31hpðhb þ hpÞ
@2w

@x2

� �
þ

2b33hp

blp
Q � ðLs þ RÞ ’Q

	 

Hðx � x1Þ �Hðx � x2Þ½ � ¼ 0; ð23Þ

h31hpðhb þ hpÞ
@2w

@x2

� �
þ
2b33hp

blp
Q �

LRs

Ls þ R

� �
’Q

	 

Hðx � x1Þ �Hðx � x2Þ½ � ¼ 0: ð24Þ
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The first terms of Eqs. (23) and (24) define the sensor voltage generated by the curvature of the
deformed beam. The second terms are due to an inherent capacitance of a pair of PZT. The third
terms are defined as shunt voltages.
The assumed mode method is used to discretize the governing Eq. (22) into a set of ordinary

differential equation. The flexural motion for a cantilever beam is approximated by

wðx; tÞ ¼
Xn

i¼1

ciðxÞWi tð Þ ¼ c½ �T W½ �; ð25Þ

where ciðxÞ ¼ cos bix � cos bix � siðsinh bix � sin bixÞ: Here the constants si are the mode shape
coefficients [11]. Applying mode shape functions to the equation of motion (22) results in the
following discretized differential equations of the piezo/beam system:

M .WðtÞ þ Cb
’WðtÞ þ KW ðtÞ ¼ fext þ fpiezo; ð26Þ

where

M ¼ rbAb

Z l

0

cic
T
i dx þ 2rpAp

Z l

0

cic
T
i Hðx � x1Þ �Hðx � x2Þ½ � dx;

Cb ¼ cb

Z l

0

c0
ic

0
iT dx;

K ¼ EbIb

Z l

0

c00
i c

00T
i dx þ 2EE

p Ip

Z l

0

c00
i c

00T
i Hðx � x1Þ �Hðx � x2Þ½ � dx;

fext ¼
Z l

0

cif ðx; tÞ dx;

fpiezo ¼ �bpd31E
E
p VSHðhb þ hpÞ

Z l

0

ci d
0ðx � x1Þ � d0ðx � x1Þ

� 
dx;

where d31 is the piezoelectric material constant. Moreover, Hamilton’s principle yields the
following boundary conditions:

Geometric boundary conditions:

w ¼ 0;
@w

@x
¼ 0: ð27Þ

Natural boundary conditions:

EbIb

@2w

@x2

� �
þ 2EpIp

@2w

@x2

� �
Hðx � x1Þ �Hðx � x2Þ½ �

¼ �bph31D3hpðhb þ hpÞ Hðx � x1Þ �Hðx � x2Þ½ �;

EbIb
@3w

@x3

� �
þ 2EpIp

@3w

@x3

� �
Hðx � x1Þ �Hðx � x2Þ½ �

¼ �bph31D3hpðhb þ hpÞ dðx � x1Þ � dðx � x2Þ½ �: ð28Þ
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These boundary conditions render the solution of the differential equation of piezo/beam
system unique. Eq. (28) shows how the bending moment and the shear force generated by the
electromechanical interactions of the piezoelectric material affects the natural boundary condition
of the piezo/beam system.
The charge generated by the PZT patches due to the vibration of the cantilever beam can be

determined from the electric field displacement, {D}:

QðtÞ ¼
Z

A

D dA; ð29Þ

with

Df g ¼ d½ �T Tf g þ e½ �T Ef g; ð30Þ

where [d], {T}, [e] and {E} represent the piezoelectric strain constant, stress, dielectric permittivity
and applied field strength matrix, respectively [10]. Substituting the mode shape function into
Eq. (29), the output of a piezo sensor can be derived as follows:

QiðtÞ ¼ ðC0Dn þ CT
p VSHÞ Hðx � x1Þ �Hðx � x2Þ½ �; ð31Þ

where

C0 ¼ d31E
E
p bp

hb

2
þ hp

� �
and Dn ¼

Z l

0

@2ci

@2x
Hðx � x1Þ �Hðx � x2Þ½ � dx:

The current across PZT electrodes can be obtained from the induced charge of the piezoceramic
sensor as follows:

IiðtÞ ¼
dQi

dt
¼ C0Dn

’WnðtÞ þ CT
p
’VSH

� �
Hðx � x1Þ �Hðx � x2Þ½ �: ð32Þ

According to Eq. (3), the shunt voltage is given by:

In series shunt case,

Vse
SH ¼ �Zse

SHIiðtÞ ¼ �ðLs þ RÞ C0Dn
’WnðtÞ þ CT

p sVSH

n o
Hðx � x1Þ �Hðx � x2Þ½ �: ð33Þ

In parallel shunt case,

V
pa
SH ¼ �Z

pa
SHIiðtÞ ¼ �

LRs

ðLs þ RÞ
C0Dn

’WnðtÞ þ CT
p sVSH

n o
Hðx � x1Þ �Hðx � x2Þ½ �: ð34Þ

The shunt voltage can be rewritten in series R–L and in parallel R–L case

Vse
SH ¼ �

Ls þ R

LCps2 þ RCps þ 1
C0Dn

’WiðtÞ; ð35Þ

V
pa
SH ¼ �

LRs

LRCps2 þ Ls þ R
C0Dn

’WiðtÞ: ð36Þ

Substituting these shunt voltages into the piezo force, fpiezo; in Eq. (26), the final forms of
governing equations are given by

M .WðtÞ þ Ctotal
’WðtÞ þ KW ðtÞ ¼ fext; ð37Þ

where Ctotal ¼ Cb þ fpiezo: It should be noticed that Eq. (37) corresponds to Eq. (5).
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4. Experimental implementation

Experiments are performed to examine the behavior of the two different resonant shunt circuits.
A pair of piezoceramics, PZT 5H (2.54 cm� 4.5 cm) bonded to each side of the root of the
aluminum beam (which is 20 cm long and 2.54 cm wide) by using epoxy adhesives. This edge of the
piezoceramic was 0.1 cm away from a fixed end of the beam. This end was clamped vertically to an
electro-magnetic shaker. An accelerometer was centered at the free end of the beam to measure
system output response. The pair of piezoceramics was poled through their thickness and elongate
lengthwise so that they are operating in transverse mode (d31). The beam is grounded and wired in
parallel to produce opposite fields in the top and bottom piezoceramics. This causes a moment on
the beam when the top PZT contracts as the bottom one expands. Tables 1 and 2 show the
physical and geometrical parameters of the aluminum beam and PZT 5H.
The internal function generator of the spectrum analyzer is used to generate a random base

acceleration from 1 to 200Hz with a spectral resolution 0.125Hz. This random signal is used to
excite the beam, which is mounted on an electro-magnetic shaker being driven through a power
amplifier. The input signal is measured by an accelerometer, which is attached to an APS shaker.
The tip dynamic response (output signal) of the beam is measured by an accelerometer and is fed
to the spectrum analyzer to determine its frequency content. Thus, the transfer function between
the input and output is obtained.
An active filter [12] is used as a synthetic inductor in the shunt circuit as shown in Fig. 4. The

advantages of this inductor are due to its convenience, light weight, and its ability to generate
various inductances. R4 is ordinarily a capacitor, with the other impedances being replaced by
resistors, creating an inductor L ¼ R�C; where R� ¼ R1R3R5=R2: By changing the variable
resistor R2, various inductor values can be obtained.
Several experimental parameters must be determined before conducting an experiment. The

open circuit capacitor value (constant stress) of the PZT-5H of 2.0E�7 nF is measured by using
an impedance analyzer. The generalized electromechanical coupling constant for a piezoelectric
bonded to a structure can be obtained from the frequency change of the electric boundary

ARTICLE IN PRESS

Table 1

Physical and geometrical properties of the beam and PZT-5H

Material Young’s modulus (Pa) Density (kg/m3) Poisson ratio (n) Thickness (m)

Aluminum 7.1E10 2700 0.33 0.8E�3

PZT-5H 6.2E10 7800 0.3 2.6E�4

Table 2

Main piezoelectric parameters of the PZT-5H

d31 (m/V) Polarization

field (V/M)

Coupling

coefficient, k31

KT
3 ; dielectric

constant

g31 (Vm/N) Curie

temperature (1C)

�320E�12 1.5E6 0.44 3800 �9.5E�3 250

C.H. Park / Journal of Sound and Vibration 268 (2003) 115–129124



conditions [3]

K2
31 ¼

ðoD
n Þ

2 � ðoE
n Þ

2

ðoE
n Þ

2
; ð38Þ

where oD
n and oE

n are the natural frequencies of the structural mode of interest with an open- and
a short-circuit piezoceramic, respectively. These frequencies can be obtained from the frequency
response function. Here, oD

n and oE
n are 102.5 and 101.5Hz, respectively. The generalized

electromechanical coupling constant in transverse mode is 0.14.

5. Results and discussions

The series and the parallel resonant shunting damper are both applied experimentally to reduce
the second mode vibration amplitude of the cantilever beam. Fig. 5(a) shows experimental results
for the series R–L shunt circuit. The vibration amplitude decreases as the shunting resistance
decreases. The used resistor values for the series R–L shunt are tabulated in the left column of
Table 3. On the contrary, increasing resistance results in improving the vibration attenuation of
the parallel R–L shunt as shown in Fig. 5(b). The resistor values are in the right column of Table
3. This phenomenon is easily explained by considering the characteristics of series and parallel R–
L–C circuit. If the shunting resistor reaches infinity in the series R–L shunt circuit, the current
does not flow. This is referred to as an open circuit. However, it is evident that the parallel shunt
circuit would be open (energy does not dissipate), as the shunting resistor value reaches near zero.
When the peak becomes a flat plateau, we refer to this as an optimum. As the electronic damping
increases further, the two peaks rise up in both cases, exactly as in the case of a mechanical
absorber. From Fig. 5, the passive electronic shunt damping is found to produce 15 dB reduction
from the peak vibration amplitude of the open circuit. Figs. 6(a) and (b) show the transfer
functions of the general model for the series (Eq. (12)) and parallel (Eq. (15)) shunt circuit. The
frequency response function of the governing Eq. (37) of the piezo/beam system is also shown in
Fig. 7. The shunting resistances predicted by the theoretical models are in good agreement with
those obtained by experiment. Table 3 shows a comparison between the theoretical and
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Fig. 4. Circuit diagram of a synthetic inductor.
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experimental resistor shunting values. The error percentage is averagely less than 7.8% between
experiment and the tuned electrical absorber model and 15% between experiment and theoretical
analysis by using the assumed series method.

ARTICLE IN PRESS

Fig. 5. Experimental transfer response of the piezo/beam system: (a) a series R–L and (b) a parallel R–L shunt circuit.

Table 3

Comparison between theoretical and experimental shunting resistor values

Series R–L shunt circuit Parallel R–L shunt circuit

Experiment (O) Tuned electrical

model, Eq. (12) (O)
Theoretical

model (O)
Experiment (O) Tuned electrical

model, Eq. (15) (O)
Theoretical

model (O)

Open (1)a 500,000 500,000 Open (1)a 1000 1000

9190 (2) 9190 9500 8030 (2) 8030 8030

3553 (3) 3553 4000 18,430 (3) 18,430 18,430

1359 (4) 2500 2500 48,100 (4) 40,100 35,000

687 (5) 1500 1500 98,300 (5) 75,300 70,500

a (1), (2), (3), (4), and (5) are the numbers in Figs. 5–7.
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6. Conclusions

The general modelling of the tuned electrical absorber is developed to describe an additional
damping which can be augmented to the equation of motion of the piezo/beam system. A
mathematical model is also developed to describe the flexural vibrations of the cantilevered piezo/
beam system by using assumed series displacement shape functions. The shunt voltage was
formulated from the charge generated by the piezoceramic due to beam vibrations. The
effectiveness of a series R–L and parallel R–L resonant shunt circuit was demonstrated
theoretically and experimentally. It is observed that effective attenuations of vibration amplitudes
have been achieved with decreasing the shunting resistor values for the series R–L shunt circuit
and increasing the shunting resistor values in parallel R–L shunt circuit. The predictions of
theoretical models have been validated experimentally. The results showed a good agreement
between theory and experiment. The theoretical and experimental techniques presented in this
study provide a valuable tool in the design of effective passive electrical damping.

ARTICLE IN PRESS

Fig. 6. Transfer response of the tuned electrical absorber by using Eqs. (12) and (15): (a) a series R–L and (b) a parallel

R–L shunt circuit.
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